Combinaciones

Esta es la entrada 294 de este blog. Se publica el 07/09/2023, que ¡no es miércoles! Ayer los asuntos urgentes dieron paso a un cansancio extremo que me llevó a pasar la escritura para hoy.

Quería contarles una anécdota más de las capacitaciones que estuvimos dando hace dos semanas. En una de las escuelas el colectivo docente resultó particularmente retador en sus preguntas, lo cuál me dio mucha alegría. Al jugar con T3RCIA (ver más sobre los juegos aquí), cuando les daba un dato sobre cuántas cartas debían de encontrar en la baraja completa según la cantidad de características que estuvieran indicando buscar, querían saber por qué.

T3RCIA es un conjunto de cartas lógicamente estructuradas, cada una con una imagen que posee cuatro características en tres variantes cada una, en todas las combinaciones posibles. Hay una carta por cada combinación, es decir, hay 3 x 3 x 3 x 3 = 81 cartas todas diferentes.

Si separamos las cartas por colores, como hay 3 colores diferentes, habrá 27 cartas de cada una.

Si separamos las cartas por colores y figuras al mismo tiempo, como hay 3 figuras diferentes, habrá 9 cartas de cada combinación color-figura.

Si buscamos todas las cartas que compartan tres características (mismo color, figura y textura), habrá solo 3 cartas.

Y si buscamos todas las cartas que compartan cuatro características (mismo color, figura, textura y cantidad) solo encontraremos una.

La razón de esto sale del mismo diseño del juego como una baraja lógicamente estructurada y fue relativamente sencilla de entender para los docentes.

La situación se volvió más compleja cuando empezamos a trabajar con negaciones:

Las cartas que NO son verdes son 81 – 27 = 54

Las cartas que NO son verdes ni hexágonos son 36, porque a 81 se le restan 27 (las cartas verdes que son la tercera parte de 81) y luego 18 (los hexágonos, que son la tercera parte de las 54 que quedaban)

Las cartas que NO son verdes, ni hexágonos, ni vacías son 24, porque a 81 se le restan 27, luego 18 y luego 12 (la tercera parte de 36).

Por último, las cartas que NO son verdes, ni hexágonos, ni vacías, ni de una figura son solo 16, cantidad que se puede entender como 81 – 27 – 18 – 8 = 16, es decir, al mazo completo le vamos quitando la tercera parte de lo que tenía, al ir «cancelando» características.

Pero ese 16 también se puede entender como la multiplicación de 2 (cartas no verdes) x 2 (cartas no hexágonos) x 2 (cartas no vacías) x 2 (cartas de no una figura) = 16.

Un maestro sugería que a este número llegáramos como (2 + 2 + 2 + 2) x 2, en vez de como 2 x 2 x 2 x 2, pues ambos resultados eran 16.

Y ahí fue necesario hacerle ver lo siguiente: si bien el resultado de 2 + 2 es el mismo que el de 2 x 2, eso no ocurre con el 3, pues 3 + 3 no da lo mismo que 3 x 3. Por lo tanto, su lógica dejaría de funcionar si las tarjetas tuvieran una cantidad distinta de variedades en sus características.

Tardé en convencerlo, pero lo logré.

Buscando imágenes para ilustrar esta entrada, me encontré con ese semáforo prendido de todas las formas posibles, una versión muy pequeñita de lo que se puede hacer con T3RCIA (ver más aquí).

Hasta el próximo miércoles.

Rebeca

PD1: Quiero agradecer a esta página en la que me apoyo constantemente para redactar el blog: pixabay