Ecuaciones lineales con una incógnita: más estrategias para entenderlas, resolverlas y… crearlas

diary-1974724_1280_optEn la entrada pasada (ver aquí) escribí sobre qué es una ecuación, para qué sirve, qué significa resolverla, cuántas soluciones tiene, qué cuidados es necesario tener al resolverla, cuáles son las operaciones con las que se resuelve, por qué es importante entender la solución de ecuaciones de la forma correcta y concluí con una idea para iniciar a los niños de primaria en el álgebra… Vaya, a veces alcanzo a compartir mucha información en una sola entrada. Lo bueno es que ustedes pueden tomarse el tiempo que necesiten para leerla y hacerla suya. La información se queda ahí para cuando requieran consultarla.

Esta entrada es un complemento a la anterior, describo con más detalle algunos conceptos y proporciono más estrategias para solucionar ecuaciones lineales con una incógnita (como un mapa y una brújula para “encontrar el valor de x“). Incluí una sección con ideas para construir ecuaciones lineales con una incógnita que sean interesantes de resolver (digamos que son instrucciones para “esconder el valor de x“).Leer más »

¿Qué es eso llamado “ecuación” y cómo se resuelve cuando es lineal, con una incógnita?

En la entrada sobre sentido de estructura (ver aquí) escribí, entre otras cosas, sobre cómo se conforman las estructuras algebraicas y sobre los significados del signo igual, según el tipo de estructura algebraica dentro de la cual se encuentra.

Ecuación introducción_opt.jpgAhora escribiré sobre lo que es una ecuación, lo que significa “resolver una ecuación” y los cuidados que son necesarios al “resolver una ecuación lineal con una incógnita”. También incluiré una sugerencia sobre cómo plantear ejercicios en primaria que preparen a los alumnos para resolver ecuaciones lineales en secundaria.Leer más »

Sentido de estructura: reconocer la estructura de una expresión algebraica antes de trabajar con ella

Me encanta armar rompecabezas. Poner orden donde antes había caos e identificar el lugar de cada pieza es un desafío emocionante, aunque limitado. Generalmente, la imagen final está predeterminada y cada pieza tiene una posición y una función única.

building-blocks-2026721_1280_optUn desafío más emocionante es armar objetos con piezas intercambiables. Una misma pieza puede tener distintas funciones según su posición. La relación entre dos piezas puede ser diferente según la forma en que se unan, esto es, según la estructura del objeto.

cogs-2279289_1280_optLas expresiones matemáticas, en especial las algebraicas, también tienen una estructura y están formadas por piezas, o elementos, cuya función es variable y depende de a qué otros elementos están unidos y de qué forma.Leer más »