Reversibilidad en matemáticas: ¿por qué es importante al enseñar y aprender?

Ésta es la entrada 63 del blog. Es múltiplo de 9, un número que me gusta un poco más que los demás (ver más sobre las características del 9 aquí), por lo que la dedicaré a un tema especial: La reversibilidad en matemáticas.

arrows-1837574_1280_opt.pngComprender qué es la reversibilidad en general y en matemáticas en particular facilitará de forma importante el aprendizaje y la enseñanza de la materia, por diversas razones que veremos a lo largo de la entrada.Leer más »

Enseñar matemáticas siendo un buen líder positivo

number-38552_640_opt.pngÉsta es la entrada número 36 de Impulso Matemático. Todas son importantes para mí, aunque cada 9 entradas publico algo especial, un poco diferente a lo demás. Ésta será una de esas entradas especiales.

Un reto al que me enteré que me enfrentaría hace algunos meses me llevó a comenzar a leer libros y ver videos sobre liderazgo. Descubrí que volverte un buen líder positivo de tus hijos y alumnos es, más que valioso, indispensable para lograr que ellos aprendan. Por ello decidí dedicar esta entrada a compartir lo que he aprendido, y he estado aplicando, relacionado con el tema.

Elegí a un director de orquesta como imagen principal porque es una excelente representación de un líder. Él no toca la música, pero sin él los músicos no sabrían bien qué hacer. El profesor no mete los conocimientos en la cabeza de los alumnos, pero gracias a su dirección los propios alumnos hacen suyos los conocimientos.

Leer más »

Desigualdades: ¿cómo entenderlas en aritmética y cómo resolverlas (y graficar las soluciones), cuando son lineales, en álgebra?

solar-system-11596_640_opt.pngReconocer las características de algo nos permite compararlo, en cuanto a esas características, con algo más. Comparar en matemáticas es indispensable. Comparamos formas, tamaños, posiciones, estructuras, etcétera,  principalmente para tomar decisiones sobre qué hacer con aquello que comparamos. Si yo fuera ese puntito azul que es la Tierra, llevaría la fiesta en paz con Júpiter, después de comparar mi tamaño con él, por ejemplo.

slip-up-709045_640_opt.jpgDos cosas pueden ser iguales o desiguales entre sí, una puede ser mayor que otra o al revés. Hoy veremos los cuidados que es necesario tener al entender las desigualdades (comparaciones) en aritmética y al resolver desigualdades algebraicas, lineales en una variable (simples y dobles) y graficar esas soluciones, para evitar tener un resbalón con ellas.

Como verán, empezaremos con temas de preescolar y llegaremos hasta secundaria-preparatoria. Así son las matemáticas, todo el conocimiento está ligado, por ello es tan importante tener buenas bases para avanzar a paso firme y enseñar sabiendo hacia dónde vamos.

Agradezco a Casandra por hacerme la pregunta que me inspiró para escribir esta entrada.

Leer más »

Círculo: esa figura geométrica tan especial

zirkel-3128952_640_opt.pngfreehand-2404341_640_opt.pngDe entre las figuras geométricas básicas que existen: cuadrado, triángulo, rectángulo, círculo…, el círculo posee características que lo hacen muy diferente a las demás, empezando porque se necesita un compás para dibujarlo, a comparación de las que se dibujan con regla (bueno, también se pueden dibujar a mano alzada, como en la imagen, pero no quedan tan bien).

Escribí hace tiempo una entrada sobre construcción de triángulos con medidas enteras para lados, perímetro y área simultáneamente (ver aquí) y otra sobre construcción de cuadriláteros y polígonos también con medidas enteras, o casi (ver aquí). Creo que es buen momento para escribir sobre el círculo… cuyas medidas de radio, perímetro y área nunca podrán ser enteras al mismo tiempo. Sigan leyendo para saber por qué.

Será una entrada un poco ecléctica, esto es, no sólo incluiré algo de geometría como tal sino también algunas curiosidades relacionadas con esta simpática figura geométrica. Comencemos.Leer más »

Material lógicamente estructurado: ¿qué es, cómo se crea y cómo se usa?

brain-2750453_640_opt.pngEn la segunda entrada de este blog (ver aquí) mencioné que considero el pensamiento lógico-matemático el primer pilar de una buena relación con las matemáticas. En una entrada posterior (la 18, ver aquí) escribí más sobre su utilidad y compartí algunas ideas para fomentarlo.

Hoy les presento una nueva idea para desarrollar el pensamiento lógico matemático: crear y usar material lógicamente estructurado. Al hablar de este material normalmente se hace referencia a algo físico, manipulable, pero propondré también hoy unas opciones “abstractas” para apoyar el aprendizaje eficiente (ver más aquí), en este caso, desarrollar ese pensamiento mientras se aprende algún otro tema de matemáticas. Leer más »

Aprendizaje eficiente: algunas ideas para lograrlo

¿Cuál es nuestro interés principal cuando diseñamos una actividad matemática? ¿Practicar el tema del día? ¿Cubrir el contenido del programa? ¿Preparar a los alumnos para un examen?

¿Qué pasaría si le diéramos un propósito más ambicioso a las actividades que realizan nuestros alumnos en clase?

Una intención que las haga más eficientes…

teacher-1411743_1280_opt.pngHabía escrito previamente una entrada sobre cómo hacer preguntas con intención didáctica clara, que va en este mismo sentido (ver aquí). Revisaremos en esta entrada más ideas que pueden ayudarnos a crear actividades con una intención didáctica más amplia, que permitan aprovechar mejor el tiempo que los alumnos emplean en realizarlas. Leer más »

Sentido numérico y jerarquía de las cuatro operaciones básicas

Esta entrada va dedicada a Salvador, en recuerdo de esas interminables horas estudiando juntos, tanto matemáticas como otras materias, a lo largo de la preparatoria y la carrera de ingeniería industrial.

23_optAhora explico por qué: buscando alguna idea sobre qué escribir para esta entrada, ¡la número 23 ya! recordé que, durante un torneo de futbol en la universidad, Salvador mencionó que había elegido como número de su uniforme el 23 porque jugaba dos – tres (en México eso significa poco mejor que regular). Así como él lo hizo en ese momento, hay muchas formas de reinterpretar los números, de jugar con ellos, y todas ellas nos permiten desarrollar el sentido numérico, que yo considero el segundo pilar en la buena relación con las matemáticas (ver la primera entrada al respecto aquí).

Para mí el primer pilar es el pensamiento lógico matemático, del que ya he escrito dos entradas (ver aquí y aquí). Ésta será la segunda dedicada específicamente al sentido numérico. También encontrarán referencias a alguno de los dos pilares, o a ambos, en muchas de las otras entradas que he escrito. Por cierto, incluiré un breve apartado sobre jerarquía de las operaciones matemáticas, para que tengamos a la mano las reglas con las que se rigen los juegos con los números.

Creo sinceramente que, desarrollando esos dos pilares y entendiendo bien los porqués de los conceptos y procesos matemáticos, todos podemos llevar una muy buena relación con las matemáticas. Para apoyar en ese sentido escribo este blog.Leer más »

Sucesiones, series y patrones: nos ayudan a interpretar al mundo

Se dice que las matemáticas son la ciencia de los patrones. Algunos son sencillos de reconocer, otros son más “truculentos”, por decirlo de alguna manera. Cuando se trabaja con sucesiones y series, se reconocen patrones, por eso es tan importante hacerlo. infographic-2867656_1280_optEscribiré, en esta entrada y en la siguiente, tanto sobre las sucesiones y series más sencillas, como sobre algunas más complejas, para que todos los profesores y papás con hijos en distintos niveles escolares encuentren algo útil y, lo más importante, entiendan de dónde viene y hacia dónde va este tema. Recuerden la importancia de las conexiones entre conocimientos.

Esta entrada va dedicada a Mely, una entusiasta profesora de primaria que me sugirió el tema. Gracias por ello.Leer más »

Preguntas con intención didáctica clara producen más aprendizaje al responderlas

thinker-28741_1280_optLos profesores y los papás hacemos preguntas a nuestros alumnos e hijos y esperamos provocar en ellos un proceso de pensamiento (como fichas de dominó que caen una tras otra, o como algo más complejo) que los lleven a ciertas respuestas. Para algunas preguntas, las respuestas pueden obtenerse y/o expresarse de diferentes formas. Según la intención didáctica de la pregunta (lo que queremos que aprendan al contestarla), puede ser necesario que sea respondida de cierta forma y/o con cierto proceso. Sobre eso compartiré algunas ideas hoy.

Se me ocurrió escribir acerca de esto al ver cómo calificó la maestra una tarea de fracciones de mi sobrino, en quinto de primaria. Los valores de las respuestas estaban bien calculados, pero al parecer no estaban expresados como ella esperaba, así que llenó de “taches”  la hoja, sin que el niño comprendiera del todo por qué. Sigan leyendo para conocer el resto de la historia.Leer más »