Números romanos: cómo leerlos, escribirlos, hacer operaciones con ellos y encontrar capicúas

arrow-2085195_640_opt.pngLa idea de esta entrada surgió al ver la sudadera que traía mi hijo David, con un gran número 19 escrito en romano: XIX. Se trata de un capicúa, o número palíndromo, esto es, que se lee igual de izquierda a derecha y de derecha a izquierda. Incluso se lee igual si se le pone de cabeza. El verlo me hizo querer averiguar cuántos otros capicúas habría entre los números romanos. Sospechaba que serían muy pocos, lo cual confirmé mediante el pequeño análisis que les presento hoy. De verdad que era limitada esa numeración, por ello la matemática estuvo detenida en Europa hasta que llegó la numeración indo-arábiga, que es posicional (ver más sobre el sistema numérico decimal aquí).

Al darme cuenta de que ésta sería la entrada XXXVIII, justo el doble de XIX, me quedó más que claro que los números romanos y sus peculiaridades eran un buen tema sobre el cual publicar hoy.  Veremos no sólo cómo traducir de una escritura a otra, sino cómo hacer operaciones con estos números y cómo aprovechar sus características para desarrollar el pensamiento lógico (ver más aquí y aquí) y el sentido numérico (ver más aquí y aquí) y, con ello, hacer más eficiente el aprendizaje (ver más aquí). Esto se puede lograr, entre otras formas, encontrando capicúas entre los números romanos y los indo-arábigos.Leer más »

Desigualdades: ¿cómo entenderlas en aritmética y cómo resolverlas (y graficar las soluciones), cuando son lineales, en álgebra?

solar-system-11596_640_opt.pngReconocer las características de algo nos permite compararlo, en cuanto a esas características, con algo más. Comparar en matemáticas es indispensable. Comparamos formas, tamaños, posiciones, estructuras, etcétera,  principalmente para tomar decisiones sobre qué hacer con aquello que comparamos. Si yo fuera ese puntito azul que es la Tierra, llevaría la fiesta en paz con Júpiter, después de comparar mi tamaño con él, por ejemplo.

slip-up-709045_640_opt.jpgDos cosas pueden ser iguales o desiguales entre sí, una puede ser mayor que otra o al revés. Hoy veremos los cuidados que es necesario tener al entender las desigualdades (comparaciones) en aritmética y al resolver desigualdades algebraicas, lineales en una variable (simples y dobles) y graficar esas soluciones, para evitar tener un resbalón con ellas.

Como verán, empezaremos con temas de preescolar y llegaremos hasta secundaria-preparatoria. Así son las matemáticas, todo el conocimiento está ligado, por ello es tan importante tener buenas bases para avanzar a paso firme y enseñar sabiendo hacia dónde vamos.

Agradezco a Casandra por hacerme la pregunta que me inspiró para escribir esta entrada.

Leer más »

Gráficas básicas: puntos individuales y puntos que siguen un patrón y ayudan a interpretar lo que ocurre

data-3314284_640_optEn la entrada anterior (ver aquí) revisamos los cuidados básicos que deben tenerse al trabajar con la recta numérica y el plano cartesiano. En esta entrada veremos cómo graficar y trabajar con lo más sencillo: puntos individuales y puntos que siguen un patrón. También veremos los cuidados que debemos tener para hacerlo bien y cómo interpretar lo que graficamos, dado que para eso se hacen las gráficas, para contar con una forma matemática-visual de interpretar la realidad. A partir de esa interpretación, nuestro conocimiento de esa realidad se amplía y podemos tomar mejores decisiones.Leer más »

La recta numérica y el plano cartesiano: ¿cómo entenderlos para evitar temerlos?

mathematics-1509559_640_opt.jpgHe comentado en ocasiones anteriores que las matemáticas son la ciencia del reconocimiento de patrones. También puede considerarse que es una ciencia que nos permite tanto entender el orden de lo que observamos, como explicarlo, mediante cadenas de razonamientos, a través de objetos matemáticos.

Entre esos objetos matemáticos están la recta numérica, con sus puntos y el plano cartesiano, con sus coordenadas cartesianas. Ellos son de gran ayuda, entre otras cosas, para ordenar y entender de forma visual lo que ocurre en el mundo.Leer más »

Exponentes (Parte 2): otros cuidados que debemos tener al trabajar con ellos

En la entrada pasada (ver aquí) revisamos los principios del trabajo con exponentes, enfocándonos en las expresiones más simples. Quedaron pendientes las expresiones con exponentes fraccionarios y con signos, así como las expresiones compuestas, en las que un exponente afecta a más de una base a la vez, o se combinan bases y exponentes de distintas formas.

mathematics-3393240_640_opt.jpgConociendo los cuidados que se deben tener según la estructura de la expresión (ver más sobre sentido de estructura aquí), será sencillo trabajar con exponentes dentro de actividades matemáticas de todo tipo, como álgebra y cálculo, para aprovechar el hecho de que son una forma abreviada de expresar operaciones.Leer más »

Exponentes: ¿qué son y qué cuidados debemos tener al trabajar con ellos?

Así como la multiplicación es una suma abreviada, la potenciación es una multiplicación abreviada. En ella, la base (b en la imagen principal) nos indica el número que se multiplica repetidamente y el exponente (n en la imagen principal) nos indica cuántas veces se multiplica dicho número. Así de simple.

Claro que después de decidir expresar 2 x 2 x 2 como , los matemáticos le vieron a esa notación una serie de posibilidades muy interesantes para modelar otras situaciones. Es por esa variedad de escenarios por lo que es una buena idea tener muy presentes los cuidados necesarios al trabajar con expresiones que incluyen exponentes. Con ello, podemos evitar cometer errores dentro de ejercicios matemáticos de todo tipo.

dandelion-337198_1280_opt.jpgComo en toda la matemática, conviene que los profesores de cualquier grado escolar tengan una idea acerca de los temas futuros en los que se va a usar lo que están enseñando actualmente a sus alumnos. Así podrán, tanto sembrar buenas semillas en ellos, como evitar los atajos que puedan provocarles problemas más adelante. Por ello, esta entrada parte de lo aritmético y llega a lo algebraico.

Leer más »

Reglas de tres compuestas: ¿cómo plantearlas y resolverlas?

questions-1922477_1280_optListo, después de aprender sobre el tema la semana anterior, nos hemos vuelto hábiles con las reglas de tres directas e inversas. Ahora nos proponen un problema que parece como de regla de tres, pero no tiene tres, sino ¡cinco! datos. ¿Qué hacemos?

En la entrada anterior (ver aquí) vimos cómo distinguir si un problema se resuelve por regla de tres, cómo diferenciar una regla de tres directa de una inversa, cómo resolver ambas y qué cuidados tener. En esta entrada veremos la continuación del tema y aprenderemos a plantear y resolver problemas de regla de tres compuesta, con cinco, siete y, ¿por qué no?, nueve datos conocidos y uno por averiguar. Leer más »