Líneas paralelas, perpendiculares, oblicuas, coincidentes ¿cómo se distinguen? ¿dónde se encuentran en las figuras geométricas básicas?

Entrada 74 del blog. La dedicaremos a revisar el tema de las líneas paralelas, perpendiculares, oblicuas y coincidentes, ¿cómo se distinguen unas de otras? y ¿dónde se les puede encontrar? Regularmente se mencionan solamente las primeras tres, sin embargo al escribir el blog siempre trato de ser exhaustiva, en la medida de lo posible y del alcance que busco, entonces contemplaremos los cuatro casos.

Este tema puede verse al menos desde dos puntos de vista: el geométrico y el algebraico (geometría analítica). La forma algebraica ya la revisamos en una entrada anterior (ver aquí). Veremos hoy la geométrica.Leer más »

Círculo: esa figura geométrica tan especial

zirkel-3128952_640_opt.pngfreehand-2404341_640_opt.pngDe entre las figuras geométricas básicas que existen: cuadrado, triángulo, rectángulo, círculo…, el círculo posee características que lo hacen muy diferente a las demás, empezando porque se necesita un compás para dibujarlo, a comparación de las que se dibujan con regla (bueno, también se pueden dibujar a mano alzada, como en la imagen, pero no quedan tan bien).

Escribí hace tiempo una entrada sobre construcción de triángulos con medidas enteras para lados, perímetro y área simultáneamente (ver aquí) y otra sobre construcción de cuadriláteros y polígonos también con medidas enteras, o casi (ver aquí). Creo que es buen momento para escribir sobre el círculo… cuyas medidas de radio, perímetro y área nunca podrán ser enteras al mismo tiempo. Sigan leyendo para saber por qué.

Será una entrada un poco ecléctica, esto es, no sólo incluiré algo de geometría como tal sino también algunas curiosidades relacionadas con esta simpática figura geométrica. Comencemos.Leer más »

Triángulos: ¿cómo elegir medidas enteras con las que sí se puedan construir?

Al diseñar figuras geométricas, para que los alumnos practiquen el calcular áreas y perímetros, nos encontramos con una dificultad: las combinaciones numéricas (altura, base y lados) deben elegirse con cuidado para que la figura pueda construirse con ellas realmente. No todas las combinaciones funcionan.

mosaic-2790344_1280_optPara facilitar el encontrar aquellas combinaciones de medidas enteras de lados y alturas de triángulos, que sí funcionan, podemos basarnos en las ternas pitagóricas, que son combinaciones de tres números enteros que cumplen con el Teorema de Pitágoras y que son fáciles de determinar si se conoce el procedimiento para generarlas.Leer más »