Sistema binario de numeración: operaciones aritméticas y un truco de adivinación de números

En la entrada pasada (ver aquí) revisamos cómo convertir un número expresado en el sistema numérico decimal a uno expresado en el sistema binario de numeración, tanto para cantidades enteras como no enteras.

calculator-1432526_1280_optEn esta entrada veremos cómo hacer operaciones aritméticas con números expresados en sistema binario y algunas curiosidades sobre este sistema de numeración, incluyendo un truco de adivinación de números basado en las propiedades del mismo. Sigan leyendo para conocerlo.Leer más »

Sistema binario de numeración: características y conversiones de y hacia el sistema de numeración decimal

binary-code-574727_1280_optEl sistema numérico decimal (ver más aquí), que usamos todos los días, al ser posicional, facilita sobremanera la forma de escribir y hacer operaciones matemáticas. De hecho, el desarrollo fuerte de las matemáticas sólo fue posible hasta que se empezó a usar dicho sistema. A los humanos nos resulta natural su uso, por estar basado en el hecho de que tenemos 10 dedos y que es factible para nosotros distinguir fácilmente entre las 10 cifras que lo componen (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9). Sin embargo, darle a entender a las computadoras la numeración base diez no resultó tan sencillo. Ellas lo que entienden muy bien es: encendido/apagado o abierto/cerrado, alto/bajo voltaje y otras combinaciones de dos estados mutuamente excluyentes, como las cifras 0 y 1.

Dado lo anterior, resulta relevante entender cómo funciona el sistema de numeración binario, cómo se hacen conversiones del sistema decimal al binario y viceversa, cómo se hacen operaciones con números en binario y, ¿por qué no? algunas curiosidades y aplicaciones interesantes de esta importante forma de escribir cantidades. Por la amplitud del tema, y para que combine con la base dos de este sistema, le dedicaré dos entradas.Leer más »