Un octavo

Esta es la entrada 375 de este blog. Un octavo se escribe en decimal como 0.375, de ahí el nombre.

La escribo para compartir una breve reflexión sobre algo que observé ayer y antier en internet:

  • Un video explicando cómo sacar el área de un triángulo «cuadriculado» en el que asumían que la medida de la diagonal de cada cuadrito era igual a la medida de su lado.
  • Un video de otro autor explicando el mismo ejercicio, en el que asumían que la base y la altura del triángulo correspondían a las medidas de dos de los lados del mismo (sin explicar que esto solo es válido si se usan los catetos de triángulos rectángulos). Y posteriormente multiplicando primero las medidas de los lados y luego haciendo varios cálculos más (se buscaba el volumen de un prisma de base triangular) antes de dividir entre dos (sin explicar que estaba obteniendo primero el volumen del prisma de base cuadrada para luego partirlo entre dos para llegar al de base triangular, o sacar el área del triángulo primero y luego multiplicarla por la altura).
  • Un video explicando la multiplicación con regletas y marcadores sobre un pizarrón blanco en el que el acomodo de las regletas no era congruente con el procedimiento que se estaba explicando.

Poniéndonos dramáticos, digamos que estaba perdiendo la fe en la humanidad.

Luego me acordé de también hay muchos videos bien hechos y útiles y pensé: de lo que se trata, como en todo lo demás que vemos en Internet, es de tener criterio y no aceptar como válido lo que nos dicen si no nos parece lógico o si no lo validamos con alguna otra fuente de confianza. Gracias, Érika, por preguntarme tus dudas sobre algunos de estos videos y hacerme reflexionar al respecto.

Incluso en lo que yo publico, aunque lo cuido mucho, también aparecen errores. Avísenme si encuentran alguno, por favor, y lo corrijo.

Como por ejemplo decir que 0.375 es 1/8, cuando realmente es 3/8, como los 3/8 que le faltan a la pizza de la imagen. 1/8 sería la rebanada que está suelta.

¿Se dieron cuenta?

Pueden ver lo que he escrito sobre fracciones aquí, aquí y aquí. Ya saben, si encuentran algún error, me avisan, por favor, para corregirlo.

Hasta el próximo miércoles.

PD: Quiero agradecer a esta página en la que me apoyo constantemente para redactar el blog: pixabay.

Suma 7

Esta es la entrada 374 de este blog. 374 es un número simpático, pues es un múltiplo de 11 (es 34 x 11) que se reconoce fácilmente porque la suma de los dígitos de las orillas (3+4) es igual al número del centro (7).

El que la suma sea 7 me recordó los dados y una actividad que le propuse hace unos días a Érika y a Pablo:

Por diseño, las caras opuestas de un dado suman 7: 1 y 6, 2 y 5, 3 y 4. He visto dados de fabricación descuidada que no respetan esa regla, pero la mayoría sí lo hacen.

Eso nos permite hacer el siguiente juego:

Se sientan dos personas una frente a la otra

Se hace una torre de 3 dados y cada persona debe «adivinar» cuánto suman los puntos de las caras de los dados que la otra persona ve.

Sabiendo que lo que yo veo más lo que el otro ve debe sumar 7 por cada dado, tengo al menos dos caminos para saber cuántos puntos hay del otro lado:

-De cada cara de mi lado calculo lo que falta para 7 y lo voy sumando.

-Sumo todos los puntos de mi lado y el resultado se lo resto a 21, que sale de multiplicar 3 dados por el 7 que suman los puntos de ambas caras.

Se puede hacer al principio con un solo dado, luego con dos y así sucesivamente hasta la mayor cantidad de dados que se logren apilar.

Por ejemplo, la suma de los puntos que yo veo en la imagen que encabeza esta entrad es 9. Entonces «adivino» que del otro lado hay 12 puntos. Veamos:

Correcto, son 12. Hay un 5 detrás del 2, un 4 detrás del 3 y un 3 detrás del 4

El primer método funciona siempre igual. Para el segundo no siempre será 21, hay que cuidar que el número del que hay que restar se obtenga de multiplicar el número de dados por 7.

¿Qué otra estrategia se les ocurre para hacer el cálculo «adivinatorio»?

Este juego permite practicar el sentido numérico uno de los dos pilares de una buena relación con las matemáticas (ver más aquí)

Hasta el próximo miércoles.

PD: Obviamente usé una suma de mi lado que diera 9, mi número favorito (ver por qué aquí)

PD: Quiero agradecer a esta página en la que me apoyo constantemente para redactar el blog: pixabay.

Exhaustivo

Esta es la entrada 373 de este blog. 373 es un lindo número capicúa (ver más sobre capicúas aquí), que se lee igual de ida y vuelta. La reversibilidad en matemáticas, el hacer las cosas de ida y vuelta, es muy importante (ver más aquí) y una de las razones es que nos permite ser exhaustivos al acercarnos a un nuevo conocimiento. Si lo comprendemos de ida y vuelta, lo podemos asimilar de una forma mucho más completa. Pueden ver lo que escribí antes sobre el tema de ejemplos limitantes y ejemplos exhaustivos aquí.

Ayer le regalé ocho dados verdes a un niño de uno de los proyectos en los que trabajo, L, que tiene fascinación por jugar con dados. Él había identificado que podía usarlos para proponerse sumas, restas y multiplicaciones, así que cuando se los di se quedó pensando y preguntó, inseguro, que si se podían usar para dividir.

Me encantó su modo de pensar exhaustivo: quería aprovechar los dados para las cuatro operaciones que conocía, suma y su contraparte resta, multiplicación y su contraparte división.

Entonces inventé algo ahí al vuelo: le dije que tirara un dado y dividiera 12 entre el número que saliera. Se puso contento y lo hizo un par de veces. Entonces le expliqué que el 12 se podría dividir entre casi todos los números del dado, excepto el 5. Y le propuse que cambiara a 60 como número para dividir entre lo que saliera en el dado.

Ojos de felicidad ante el reto y el posterior logro, como los suyos, son los que me mantienen haciendo esto. Dividir 60 entre 1, 2, 3 y 6 fue fácil para él. El 4 le costó trabajo, tardó en entender que podía calcularlo si dividía entre 2 dos veces, para llegar a 15. Dividir entre 5 fue todo un reto para él, pero lo consiguió y me dijo feliz: 60 entre 5 son 12.

Se fue muy contento con sus dados y su capacidad para usarlos para las cuatro operaciones básicas.

Y yo me quedé muy contenta primero por él y después porque sabía que escribiría sobre eso hoy. Lo que pasó me sirvió también para escribir una escena de mi siguiente novela, que empezó más o menos como lo acabo de contar y terminó buscando un número que pueda dividirse entre todas las cantidades distintas que pueden salir al sumar dos dados, desde 2 hasta 12. El número en cuestión es 27720.

La siguiente vez que vea a L le contaré de mi descubrimiento.

Gracias, Pablo, por entusiasmar a L con las matemáticas y presentármelo.

Ah, cierto, siempre que no es evidente, explico la relación de la imagen con el texto de la entrada del blog. Entré a Pixabay, de donde suelo sacar las imágenes, le pedí que me diera una relacionada con la palabra «exhaustivo» y entre las primeras que me ofreció estaba ese simpático caracol con una expresión que me recordó un poco a las ganas de saber más de L, así que la elegí para encabezar esta entrada.

Hasta el próximo miércoles.

PD1: Quiero agradecer a esta página en la que me apoyo constantemente para redactar el blog: pixabay.

De reversa

Esta es la entrada 372 de este blog. La dedicaré a una breve reflexión.

Estoy armando una tabla con un estimado de los logros esperados de un infante en sus primeros años de vida en varias áreas, dando un énfasis especial en lo relacionado con matemáticas.

Al ir llenando la información me di cuenta de algo: la mayoría de los logros los consigue el niño gracias al modelado y apoyo de sus cuidadores, no solo por cumplir años; y la mayoría de los logros en áreas no matemáticas es algo que los cuidadores modelan con mucha facilidad, frecuencia e intención: caminar, hablar, compartir, leer…

En cambio muchos de los logros posibles en el área de matemáticas no son modelados o apoyados con la misma facilidad, frecuencia e intención. Contar hacia adelante, por ejemplo, se modela más o menos según el tipo de papás, pero contar hacia atrás se modela muy poco (por mi experiencia preguntando a niños que si saben contar hacia atrás).

A veces para que ocurra algo se cuenta: 3, 2, 1, arrancan…

O en año nuevo o en un lanzamiento de algo se hace una cuenta regresiva del 10 al 0

Cuando era pequeña cantábamos la canción de los 10 perritos, que recuerdo que iba más o menos así:

Yo tenía diez perritos
Uno se cayó en la nieve
Nada más me quedan nueve, nueve, nueve, nueve, nueve

De los nueve que quedaban
Uno se fue comió un bizcocho
Nada más me quedan ocho, ocho, ocho, ocho, ocho

… y así, hasta que no quedan perritos.

Digamos que contar del 10 al 0 es algo que sí se presentan varias oportunidades de práctica, pero más allá de ese número lo más frecuente es que se practique solo contar hacia adelante, y no hacia atrás.

Y es un error, porque el contar hacia atrás tiene muchos beneficios: mejora el sentido numérico de la persona (al sentirse más cómodo moviéndose entre los números hacia adelante y hacia atrás), facilita la resta y, en general, fortalece la idea de que mucho de lo que pasa en matemáticas es de ida y vuelta, tan necesario para aprender a resolver ecuaciones más adelante.

Mi breve recomendación hoy es: practiquen con sus hijos y estudiantes a contar hacia atrás a partir de números más grandes que 10, en especial en los cambios de decena.

Es retador, es divertido y es muy útil.

Gracias, Pablo, por recordarme la canción.

Hasta el próximo miércoles.

PD1: Quiero agradecer a esta página en la que me apoyo constantemente para redactar el blog: pixabay.