Ésta es la entrada 54 de este blog. Por ser múltiplo de 9, toca escribir sobre algo especial. He decidido dedicarla al signo igual, esas dos líneas paralelas tan importantes en las matemáticas y cuya correcta comprensión en la primaria (aritmética) facilita muchísimo las cosas en la secundaria (álgebra) y más allá (cálculo diferencial e integral y demás). Si con este blog busco, entre otras cosas, mejorar la relación de las personas con las matemáticas, enfocarnos hoy en algo tan importante para lograrlo es una buena idea.
Comprender a profundidad el significado de este signo comienza por relacionarlo con la igualdad en una balanza y lleva a la igualdad de oportunidades de nuestros hijos y alumnos para elegir carrera, por haber terminado el bachillerato y por sentirse suficientemente hábiles con las matemáticas. Buena razón para escribir sobre él ¿no creen?
Si bien ya había escrito un poco sobre el signo igual en una entrada pasada sobre sentido de estructura (ver aquí) y en dos relacionadas con las ecuaciones lineales (ver aquí y aquí), ésta será una entrada que complemente a aquellas, abordada desde una perspectiva distinta, que incluye ideas para trabajar en primaria para preparar a los alumnos para el álgebra, así como ideas para trabajar en secundaria asegurando la correcta comprensión del significado del signo igual antes de pedir a un alumno que escriba o resuelva una ecuación.
Mi aventura desentrañando las razones de las dificultades matemáticas de las personas me ha llevado a concluir que los profesores de primaria pueden hacer mucho por evitarlas si eligen estrategias didácticas adecuadas, basadas en que ellos mismos comprendan los temas a profundidad y visualicen cómo se conectan con los anteriores y con los siguientes. Apoyarlos en ese sentido es otro de los objetivos de este blog y de esta entrada en particular.Leer más »

Pregunta: Si quisiéramos tener un calendario como el de la imagen para cada uno de los diferentes años que pueden existir, sin importar si se trata de 1991 o 2019, ¿cuántos diferentes tendríamos? Sigan leyendo, para que puedan conocer los patrones presentes en el calendario. lo que ayuda a desarrollar el pensamiento lógico (ver más
Esta entrada la dedicaremos a analizar y contrastar distintos casos a los que nos podemos enfrentar al determinar límites de forma analítica (sin depender de las gráficas), incluyendo límites infinitos y al infinito, que ni con un telescopio podríamos verles el final (de ahí la imagen que encabeza este texto). El alcance de esta entrada serán las funciones polinómicas, racionales, radicales, exponenciales y logarítmicas sencillas.
Por ello debemos tener diversos cuidados al entender, aprender y enseñar los conceptos y procedimientos relacionados con límites en matemáticas. En la entrada de hoy revisaremos las dificultades a las que solemos enfrentarnos para poder entender este concepto, así como las bases para sí lograr entenderlo adecuadamente. En la siguiente complementaremos con los distintos casos que necesitamos identificar al momento de determinar los límites y la forma de trabajar en cada uno.
Ésta es la primera entrada del 2019 de este blog y, a la vez, es la entrada número 50 desde que empezó a publicarse, o sea, la quincuagésima entrada. Al día de hoy hay el quíntuple del décuplo de las entradas que había el día que empecé a escribir (no logré encontrar cómo se dice cincuenta veces en numeral multiplicativo, así que multipliqué por 5 y por 10) y lo que se publica hoy es sólo una cincuentava parte de lo que se ha publicado en toda la vida del blog.